
Deep Generative Models

5. Latent variable models

•  국가수리과학연구소 산업수학혁신센터 김민중
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Recap

• Autoregressive models:
• Chain rule-based factorization is fully general 
• Compact representation via conditional independence and/or 

neural parameterizations 
• Autoregressive models Pros
• Easy to evaluate likelihoods
• Easy to train 

• Autoregressive models Cons
• Requires an ordering 
• Generation is sequential
• Cannot learn features in an unsupervised way 
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Plan for this lecture

• Latent Variable Models 
• Mixture models
• Variational autoencoder
• Variational inference and learning
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Latent Variable Models: Assumption

• Observable variables 𝒙 ∈ ℝ!
• Latent variables 𝒛 ∈ ℝ" (unobservable)

𝑝!#$# 𝒙 ='
𝒛
𝑝 𝒙, 𝒛

𝑜𝑟 = +𝑝 𝒙, 𝒛 𝑑𝒛
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Latent Variable Models: Motivation

• Lots of variability in images 𝒙 due to gender, eye color, hair color, 
pose, etc. 

• However, unless images are annotated, these factors of variation 
are not explicitly available (latent)

• Idea: explicitly model these factors using latent variables 𝒛
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Latent Variable Models

• Only shaded variables 𝒙 are observed in the data (pixel values)
• Latent variables 𝒛 correspond to high level features 
• If 𝒛 chosen properly, 𝑝 𝒙 𝒛 could be much simpler than 𝒑 𝒙
• If we had trained this model, then we could identify features 

via 𝑝 𝒛 𝒙 , e.g., 𝑝 EyeColor = Blue 𝒙
• Challenge: Very difficult to specify these conditionals by hand



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Why Latent Variable Models?

• Curse of Dimensionality
• Sparse and peaky

• Model 𝑝 𝒙, 𝒛 instead of 𝑝 𝒙
• Maximizing 𝑝& 𝒙, 𝒛 and Maximizing 𝑝& 𝒙
• Easy to sample a new data
• Neural network can learn and model a mapping effectively. 

E.g., 𝑝& 𝒙 𝒛
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Mixture of Gaussians: a Shallow Latent Variable Model 

• Mixture of Gaussians. Bayes net: 𝑧 → 𝒙
• 𝑧 = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑧 𝛾', ⋯ , 𝛾(
• 𝑝 𝒙 𝑧 = 𝑘 = 𝑁 𝒙 𝜇), Σ)

• Generative Process
• Pick a mixture component 𝑘 by sampling 𝑧
• Generate a data point by sampling from that Gaussian



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Mixture of Gaussians: a Shallow Latent Variable Model 

• Mixture of Gaussians. Bayes net: 𝑧 → 𝒙
• 𝑧 = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑧 𝛾', ⋯ , 𝛾(
• 𝑝 𝒙 𝑧 = 𝑘 = 𝑁 𝒙 𝜇), Σ)

• Clustering: The posterior 𝑝 𝑧 𝒙 identifies the mixture component
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Mixture Models 

• Alternative motivation: Combine simple models into a more 
complex and expressive one 

𝑝 𝒙 ='
*

𝑝 𝒙, 𝑧 ='
*

𝑝 𝑧 𝑝 𝒙 𝑧 ='
*

𝑝 𝑧 = 𝑘 𝑁 𝒙 𝜇), Σ)
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Example: Variational Autoencoder

• A Mixture of an infinite number of Gaussians
• 𝒛 = 𝑁 𝒛 𝟎, 𝑰 , 𝒛 ∈ ℝ"
• 𝑝 𝒙 𝒛 = 𝑁 𝒙 𝜇& 𝒛 , Σ& 𝒛 where 𝜇&, Σ& are neural networks
• Even though 𝑝 𝒙 𝒛 is simple, the marginal 𝑝 𝒙 is very 

complex/flexible 
• Hope that after training, 𝒛 will correspond to meaningful latent 

factors of variation (features)
• Unsupervised representation learning
• Features can be computed via 𝑝 𝒛 𝒙
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Example: Variational Autoencoder

• A Mixture of an infinite number of Gaussians
• 𝒛 = 𝑁 𝒛 𝟎, 𝑰 , 𝒛 ∈ ℝ"
• 𝑝 𝒙 𝒛 = 𝑁 𝒙 𝜇& 𝒛 , Σ& 𝒛 where 𝜇&, Σ& are neural networks

• 𝜇& 𝒛 = 𝜎 𝐴𝒛 + 𝒄 = 𝜎 𝒂'+𝒛 + 𝑐' , 𝜎(𝒂,+𝒛 + 𝑐,)
• Σ& 𝒛 = 𝑑𝑖𝑎𝑔 exp 𝜎 𝐵𝒛 + 𝒅 =

exp𝜎 𝒃'+𝒛 + 𝑑' 0
0 exp 𝜎 𝒃,+𝒛 + 𝑑,

• 𝜃 = (𝐴, 𝐵, 𝒄, 𝒅)
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Recap

• Latent Variable Models
• Allow us to define complex models 𝑝 𝒙 in terms of simpler 

building blocks 𝑝 𝒙 𝒛
• Natural for unsupervised learning tasks (clustering, 

unsupervised representation learning, etc.)
• No free lunch: much more difficult to learn compared to fully 

observed, autoregressive models
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Marginal Likelihood

• Let 𝑋 denote observed random variables, and 𝑍 the unobserved 
hidden or latent variables

• Suppose we have a model for the joint distribution
𝑝&(𝑋, 𝑍)

• What is the probability 𝑝&(𝑋 = �̅�) of observing a training data 
point �̅�?

𝑝& �̅� = '
*

𝑝&(𝑋 = �̅�, 𝑍 = 𝑧) ='
*

𝑝&(�̅�, 𝑧)
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Partially observed data

• Suppose we have a model for the joint distribution
𝑝& 𝑋, 𝑍

• We have a dataset 𝐷, where for each datapoint the 𝑋 variables 
are observed (e.g., pixel values) and the latent variables 𝑍 are 
never observed. 𝐷 = 𝒙 ' , ⋯ , 𝒙 -

• Maximum likelihood learning

log]
𝒙∈0

𝑝& 𝒙 = '
𝒙∈0

log 𝑝& 𝒙 = '
𝒙∈0

log'
𝒛

𝑝& 𝒙, 𝒛

• Evaluating log∑𝒛𝑝& 𝒙, 𝒛 can be intractable. For continuous 
variables, log ∫ 𝑝& 𝒙, 𝒛 𝑑𝒛 is often intractable

• Gradients ∇& also hard to compute
• Need approximations: One gradient evaluation per training data 

point 𝒙 ∈ 𝐷, so approximation needs to be cheap
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Attempt: Importance Sampling

• Likelihood function 𝑝& 𝑋 for partially observed data is hard to 
compute: 

𝑝& 𝒙 ='
𝒛∈𝒵

𝑝& 𝒙, 𝒛 = '
𝒛∈𝒵

𝑞 𝒛
𝑞 𝒛 𝑝& 𝒙, 𝒛 = 𝐸𝒛~3 𝒛

𝑝& 𝒙, 𝒛
𝑞 𝒛

• Monte Carlo to the rescue:
• Sample 𝒛 ' , 𝒛 , , ⋯ , 𝒛 ( from 𝑞 𝒛
• Approximate expectation with sample average

𝑝& 𝒙 ≈
1
𝐾
'
45'

(
𝑝& 𝒙, 𝒛(4)

𝑞 𝒛 4

• What is a good choice for 𝑞 𝒛 ? Intuitively, frequently sample
𝒛 that are likely given 𝒙 under 𝑝& 𝒙, 𝒛 .
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Estimating log-likelihoods

• Monte Carlo to the rescue:
• Sample 𝒛 ' , 𝒛 , , ⋯ , 𝒛 ( from 𝑞 𝒛
• Approximate expectation with sample average(unbiased)

𝑝& 𝒙 ≈
1
𝐾
'
45'

(
𝑝& 𝒙, 𝒛(4)

𝑞 𝒛 4

• Recall that for training, we need the log-likelihood log 𝑝& 𝒙

log 𝑝& 𝒙 ≈ log
1
𝐾
'
45'

(
𝑝& 𝒙, 𝒛 4

𝑞 𝒛 4 ≈ log
𝑝& 𝒙, 𝒛8

𝑞 𝒛8

• However, it is clear that

log 𝐸𝒛~3 𝒛
𝑝& 𝒙, 𝒛
𝑞 𝒛

≠ 𝐸𝒛~3 𝒛 log
𝑝& 𝒙, 𝒛
𝑞 𝒛
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Evidence Lower Bound

• Log-Likelihood function 

log'
𝒛∈𝒵

𝑝& 𝒙, 𝒛 = log'
𝒛∈𝒵

𝑞 𝒛
𝑞 𝒛

𝑝& 𝒙, 𝒛 = log 𝐸𝒛~3 𝒛
𝑝& 𝒙, 𝒛
𝑞 𝒛

• log is a concave function
log 𝑝𝑥 + 1 − 𝑝 𝑥8 ≥ 𝑝 log 𝑥 + 1 − 𝑝 log 𝑥8

• By Jensen Inequality(for concave function),

log 𝐸𝒛~3 𝒛 𝑓(𝒛) = log '
𝒛

𝑞(𝒛)𝑓(𝒛) ≥'
𝒛

𝑞 𝒛 log 𝑓(𝒛)
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Evidence Lower Bound

• Log-Likelihood function 

log'
𝒛∈𝒵

𝑝& 𝒙, 𝒛 = log'
𝒛∈𝒵

𝑞 𝒛
𝑞 𝒛

𝑝& 𝒙, 𝒛 = log 𝐸𝒛~3 𝒛
𝑝& 𝒙, 𝒛
𝑞 𝒛

• log is a concave function
log 𝑝𝑥 + 1 − 𝑝 𝑥8 ≥ 𝑝 log 𝑥 + 1 − 𝑝 log 𝑥8

• By Jensen Inequality(for concave function),

log 𝐸𝒛~3 𝒛 𝑓 𝒛 = log '
𝒛

𝑞 𝒛 𝑓 𝒛 ≥'
𝒛

𝑞 𝒛 log 𝑓 𝒛

• Choosing 𝑓 𝒛 = 9! 𝒙,𝒛
3 𝒛

log 𝐸𝒛~3 𝒛
𝑝& 𝒙, 𝒛
𝑞 𝒛 ≥'

𝒛

𝑞 𝒛 log
𝑝& 𝒙, 𝒛
𝑞 𝒛



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Variational inference

• Suppose 𝑞 𝒛 is any probability distribution over the hidden 
variables

• Evidence lower bound (ELBO) holds for any 𝑞 𝒛

log 𝑝& 𝒙 ≥'
𝒛

𝑞 𝒛 log
𝑝& 𝒙, 𝒛
𝑞 𝒛

='
𝒛

𝑞 𝒛 log 𝑝& 𝒙, 𝒛 −'
𝒛

𝑞 𝒛 log 𝑞 𝒛

='
𝒛

𝑞 𝒛 log 𝑝& 𝒙, 𝒛 + 𝐻 𝑞

• Claim: Equality holds if 𝑞 𝒛 = 𝑝& 𝒛|𝒙
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Variational inference

• We derived this lower bound that holds holds for any choice of  
𝑞 𝒛

log 𝑝& 𝒙 ≥'
𝒛

𝑞 𝒛 log
𝑝& 𝒙, 𝒛
𝑞 𝒛

• If 𝑞 𝒛 = 𝑝& 𝒛|𝒙 , then the bound becomes

'
𝒛

𝑝& 𝒛|𝒙 log
𝑝& 𝒙, 𝒛
𝑝& 𝒛|𝒙

='
𝒛

𝑝& 𝒛|𝒙 log
𝑝& 𝒛|𝒙 𝑝& 𝒙
𝑝& 𝒛|𝒙

='
𝒛

𝑝& 𝒛|𝒙 log 𝑝& 𝒙 = log 𝑝& 𝒙 '
𝒛

𝑝& 𝒛|𝒙 = log 𝑝& 𝒙

• What if the posterior 𝑝& 𝒛|𝒙 is intractable to compute? How 
loose is the bound?
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Variational inference(continued)

• Suppose 𝑞 𝒛 is any probability distribution over the hidden 
variables. A little bit of algebra reveals 

𝐷 𝑞 𝒛 ∥ 𝑝& 𝒛|𝒙 = −'
𝒛

𝑞 𝒛 log 𝑝& 𝒙, 𝒛 + log 𝑝& 𝒙 − 𝐻(𝑞) ≥ 0

• Rearranging, we re-derived the Evidence lower bound (ELBO)

log 𝑝& 𝒙 ≥'
𝒛

𝑞 𝒛 log 𝑝& 𝒙, 𝒛 + 𝐻(𝑞)

• Equality holds if 𝑞 𝒛 = 𝑝& 𝒛|𝒙 because 𝐷 𝑞 𝒛 ∥ 𝑝& 𝒛|𝒙 = 0
• In general, log 𝑝& 𝒙 = ELBO + 𝐷 𝑞 𝒛 ∥ 𝑝& 𝒛|𝒙
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The Evidence Lower bound

• What if the posterior 𝑝& 𝒛|𝒙 is intractable to compute? 
• Suppose 𝑞; 𝒛 is a (tractable) probability distribution over the 

hidden variables parameterized by 𝜙 (variational parameters)
• For example, a Gaussian with mean and covariance specified 

by 𝜙
𝑞; 𝒛 = 𝑁 𝒛 𝝁;, Σ;

• Variational inference: pick 𝜙 so that 𝑞; 𝒛 is as close as possible 
to 𝑝& 𝒛|𝒙
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log 𝑝& 𝒙 = ELBO + 𝐷 𝑞; 𝒛 ∥ 𝑝& 𝒛|𝒙

• The better 𝑞; 𝒛 can approximate the posterior 𝑝& 𝒛|𝒙 , the 

smaller 𝐷 𝑞; 𝒛 ∥ 𝑝& 𝒛|𝒙 we can achieve, the closer ELBO will 
be to log 𝑝& 𝒙

• Next: jointly optimize over 𝜃 and 𝜙 to maximize the ELBO over a 
dataset

The Evidence Lower bound
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• Latent Variable Models Pros:
• Easy to build flexible models
• Suitable for unsupervised learning

• Latent Variable Models Cons
• Hard to evaluate likelihoods
• Hard to train via maximum-likelihood
• Fundamentally, the challenge is that posterior inference 
𝑝& 𝒛|𝒙 is hard. Typically requires variational approximations

• Alternative: give up on KL-divergence and likelihood (GANs)

Summary
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